## Reciprocating compressor capacity |

Item | Data |
---|---|

Formula |
In a reciprocating compressor, the capacity depends on the
volume displaced by the piston during its movement. The swept
volume of one piston can be calculated the following way Not all the cylinder volume can be used for the compression as there is always the clearance at the end of the cylinder that remains with some air inside. This phenomena can be quantified by defining the volumetric efficiency of the compressor Ev should be calculated rigourously thanks to the actual volume and swept volume, but for quick estimations, the volumetric efficiency can be estimated thanks to the following expression The volumetric capacity of a single piston can then be calculated thanks to This value needs to be multiplied by the number of cylinders. |

Nomenclature |
V_{d}=Swept volume (m3)V _{s}=Actual volume capacity (m3)V _{c}=Clearance volume (m3)c=clearance=V _{c}/V_{d}=Swept volume (m3)E _{v}=volumetric efficiency (-)τ=compression ration = p _{discharge} / p_{suction}(-)St=Piston Stroke (m) k=isentropic coeffient (-) D=Cylinder internal diameter (m) |

Usual values |
For air k=1.4 L=0.04 for lubricated compressors (only for estimation) c must be defined according to the compressor type but should range from 0.04 to 0.16 |

Other relations |
The mass capacity of the compressor can be calculated, per
cylinder with The power necessary to perform the compression can be calculated the following way by using the mass capacity, the pressures and temperatures reach and taking into account the efficiency of the compressor : |

Source |
- |