Cyclone design

Step by step design guide

Do you have a question, a remark ? Please contact the author at

Section summary
1. Introduction
2. Applications of cyclones
3. Cyclone Standard Geometry
4. Cyclone Step by Step design guide
5. Cyclone design Excel calculation tool

1. Introduction

There are different processes for collecting the dust in a gas stream (see global overview here), among them, cyclones are probably one of the most widespread solution, in any industry. They are fairly simple from a mechanical point of view and therefore generally provide a cost effective solution. However, assessing the performance of a cyclone and designing a new equipment for a particular application is not always well understood and only partial literature is often found. The objective of this page is to provide a step by step approach to cyclone design. This can be sufficient to check quickly the performance of an existing cyclone or during pre-design, one should however reckon that the methodology below is not suited for detailed design which should be carried out with a reputable supplier which will likely have refined the original calculation codes provided in literature and made them more precise. One should also remark that the method given is only one among several published models which may have different accuracy.

Article in development, please stay tuned for updates

2. Applications

Cyclones are particularly used in the following applications :

- Plastics : after transport of pellets, to catch plastic dust

- Wood industry : to collect dust from sawmills

3. Cyclones standard geometry

Cyclones efficiency is directly related to their geometry, which has been the object of various research. From these research papers, a set of STANDARD dimensions have been defined. Those dimensions, or rather proportions, constitute the basis of most of the design across the industry. It is recommended to keep those standard configurations, or some adaptation by reputable suppliers, and not modify it. Specific design can still be developed for specific high value applications (FCC for example) but it goes beyond the methodology presented here, requiring modelization, pilot trials...etc...

The table below is due to Koch and Licht (1977) and is summarizing the work of different authors (Lapple, Stairmand...)

Standard dimensions of cyclones

Table  1 : Standard cyclone geometries for a tangential inlet

All the dimensions of the cyclones are related to the diameter Dc. A standard geometry is then selected and the diameter Dc is adjusted to get the desired performance.

Standard cyclone dimensions

Figure  1 : Cyclone drawing and nomenclature of characteristic geometry

4. Cyclones step by step design guide

This design guide is based on the works published by Bohnet in 1997. The approach is valid for standard cyclones with squared tangential inlets and with a small dust load in the order of max 10 g/m3. For different types of inlet or higher dust loads, some corrections are necessary.

Validity of the model : as mentionned above it is a good model for estimating the performance of a cyclone in basic design or troubleshooting but gives errors up to 40% vs experiments, depending on the conditions, thus detail calculations should be done with the help of a company specializing in cyclone design and having improved the calculation code.

4.1 Calculate K ratios

If you design a new cyclone, chose one of the standard geometry in table 1 and assume a diameter Dc. If you test an existing cyclone, determine the different ratios for the actual equipment you are evaluating.

K ratios : KH, KB, KS, Ki, KL, KZ, KD from table 1 or actual cyclone dimension

4.2 Calculate the following geometrical dimensions

4.3 Calculate inlet and outlet velocities

4.4 Calculate friction coefficients

4.5 Calculate the characteristics velocities

4.6 Calculate the cut off diameter

4.7 Calculate the efficiencies

4.8 Calculate the pressure drop

5. Cyclone design Excel calculation tool

The calculation tool will be online soon


Bohnet 1997

Powder properties Unit operations Equipment handbook
Powder Properties
Flow of solids
Mass and funnel flow silos
Particle density
Bulk Density
Skeletal density
Particle Size Distribution (PSD)
Segregation (demixing)
Dosing and weighing
Pneumatic Conveying
Solid Gas Separation
Grinding and Milling
Solid Liquid Suspension
Checking (sieve and magnets)
Big Bag Tipping Stations
Vibrating Sieve
Airlock rotary Valve
Conveying Pipe
Pipe Diverters
Rotary Valves (pneumatic)
Vibrating Tube
Screw Conveyor
Load Cells
Paddle Mixers
Ribbon Blenders